不同差分格式在同位网格系统中的计算效果比较
李本文 赫冀成 刘日新
摘要:针对流体流动数值计算的有限差分法,系统地研究了离散对流项的6种差分格式:CDS、FUDS、HDS、PLDS、SUDS和QUICK.比较计算采用同位网格系统.采用两个有分析解或基准解的算例,就不同格式对数值求解N-S方程的精度、稳定性和收敛特性的影响进行了分析比较.计算结果表明,当扩散项占主导地位时,所有格式在同位网格中几乎具有相同的计算精度.随着对流项的增加直到占主导地位,FUDS、HDS和PLDS的在同位网格中具有相同的精度,而SUDS和QUICK的精度比前三种高,CDS次之.对于相同的速度、压力松弛因子和收敛准则,各种格式在同位网格中的收敛速度相差甚微. 关键词:计算流体力学;同位网格;差分格式 中图分类号:TK121 文献标识码:A 文章编号:1005-3026(2000)04-0412-04
Effects of Various
Difference Schemes on Collocated Grid Systems
LI Ben-wen,HE
Ji-cheng (School of Materials and Metallurgy,Northeastern
University,Shenyang 110006,China) LIU Ri-xin (Beijing Savemation
Technology Co.Ltd.,Beijing
100073,China)
Abstract:Six difference schemes
including CDS,FUDS,HDS,PL DS,SUDS and QUICK for convection terms in
numerical fluid flow based on the finite difference method were
systematically investigated.The computations were performed on the
collocated grid system.Effects of accuracy,stability,and conve rgence
characteristics of the schemes on the solutions of the Navier-Stokes
equations were analyzed respectively.The results indicate that,all schemes
have the same effects on computational efforts when the diffusion term is
predominant on collocated grid.With the increase of convection,or the
convection to be dominant,the FUDS,HDS and PLDS have almost the same
accuracy on the two grids,while the SUDS and QUICK have higher accuracy
than the formers and the CDS is in the middle.For the same
under-relaxation parameters of velocity and pressure and the same
convergence criterion,the convergence rates of each scheme are nearly
equal. Key words:computational fluid
dynamics;collocated grid;difference scheme
基金项目:国家自然科学基金资助项目(59734080) 作者简介:李本文(1965-),男,湖南澧县人,东北大学教授,博士; 赫冀成(1943-),男(满族),辽宁瓦房店人,东北大学教授,博士生导师. 李本文(东北大学材料与冶金学院,辽宁沈阳 110006) 赫冀成(东北大学材料与冶金学院,辽宁沈阳 110006) 刘日新(北京赛维美高科技有限公司,北京 100073)
参考文献:
[1]Pollard A,Siu A L-W.The
calculation of some laminar flows using various discretization
schemes[J].Comp Meth Appl Mech Eng,1982,35:293-313. [2]Shyy W,Thakur
S,Wright J.Second-order upwind and central difference schemes for
recirculating flow computation[J].AIAA J,1992,30(4):923-932. [3]Thakur
S,Shyy W.Some implementational issues of convection schemes for
finite-volume formulations[J].Numer Heat
Transfer,1993,24:31-55. [4]Lilek Z,Peric M.A fourth-order finite volume
method with colocated variable arrangement[J].Computers
Fluids,1995,24:239-252. [5]Leonard B P,Drummond J E.Why you should not
use ‘Hybrid’,‘Power-Law’ or related exponential schemes for convective
modelling—there are much better alternatives[J].Int J Numer Methods
Fluids,1995,20:421-442. [6]Kong H,Choi H,Lee J S.Effects of difference
schemes and boundary treatments on accuracy of solutions of the
Navier-Stokes equations[A].Transport Phenomena in Thermal Science and
Process Engineering[C].Kyoto,1997,3:845-850. [7]Fusegi T,Hyun J
M,Kuwahara K,et al.A numerical study of three-dimensional natural
convection in a differentially heated cubical enclosure[J].Int J Heat Mass
Transfer,1991,14(6):1543-1557. [8]Peric M,Kessler R,Scheuerer
G.Comparison of finite-volume numerical methods with staggered and
colocated grids[J].Computers & Fluids,1988,16(4):389-403. [9]Ethier
C R,Steinman D A.Exact fully 3D Navier-Stokes solutions for
benchmarking[J].Int J for Numerical Methods in
Fluids,1994,19:369-315. [10]Ku H C,Hirsh R S,Taylor T D.A
pseudospectral method for solution of the three-dimensional incompressible
Navier-Stokes equations[J].J Computational
Physics,1987,70:439-462. [11]Patankar S V.Numerical heat transfer and
fluid
flow[M].NewYork:Hemisphere,1980. [12]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988. (Tao
W Q.Numerical heat transter[M].Xi'an:Xi'an Jiaotong University
Press,1988.) [13]Rhie C M,Chow W L.Numerical study of the turbulent
flow past an airfoil with trailing edge separation[J].AIAA
J,1983,21(11):1525-1532. [14]Li B W,He J C,Tao W Q.Six convective
difference schemes on different grid systems for fluid and heat transfer
with SIMPLE algorithm[J].J Thermal
Science,1999,8(4):250-261.
收稿日期:1999-06-29 |